ECT 系列

用户手册

江苏拓格电子科技技术有限公司

修订历史记录

V202

- 增加缺相检测功能, 0x2056 bit7 为 1 的时候, 使能缺相检测
- PP、PV 模式状态标志完善,回零参数 0x6099 改为标准的 32bit, 之前版本为 16bit, 非标准
- 回零方法 0x6098 改为 INT8 类型, 之前的 UINT16 为非标准
- 增加对三相电机的控制支持
- 增加 CSV 模式
- 增加 ECR86/ECT86 产品型号说明
- 产品版本统一升级为 V202

• 驱动器说明

产品介绍

感谢您选择 NOVOTECH EC 系列步进电机驱动器。EC 系列是一款高性能总线控制步进电机驱动器,同时集成了智能运动控制器的功能。EC 系列 EtherCAT 驱动器可做为标准的 EtherCAT 从站运行,支持 CoE(CANopen over EtherCAT)。ECT 系列为闭环控制。

特性

- 支持 CoE(CANopen over EtherCAT),符合 CiA 402 标准
- 支持 CSP,PP,PV,Homing 模式
- 最小同步周期 500us
- 双口 RJ45 连接器用于 EtherCAT 通讯
- 控制方法:开环控制,闭环控制/FOC 控制(ECT 系列支持)

- 电机类型:两相、三相;
- 数字 IO 端口:

4 路光电隔离的数字信号输入:IN1、IN2 为编码器输入;IN3~IN6 为 24V 单端输入,共阳极接法;

2 路光电隔离的数字信号输出,最大耐受电压 30V,最大灌入或拉出电流 100mA,共阴极接法。

电气特性

ECT 系列产品规格列表

产品型号	ECT42	ECT60	ECT86	
输出电流(A)	0.1~2A	0.5~6A	0.5~7A	
默认电流(mA)	450	3000	6000	
电源电压	24~80VDC	24~80VDC	24~80VAC	
匹配电机	42 基座以下	60 基座以下	86 基座以下	
编码器接口	增量式正交编码器			
编码器分辨率	1000~65535 脉冲/转			
光电隔离输入	4 路共阳极 24V 输入			
光电隔离输出	2 路光电隔离输出:报警,抱闸,到位及通用输出			
通讯接口	X	7 RJ45,带通讯 LED 指:	<u></u>	

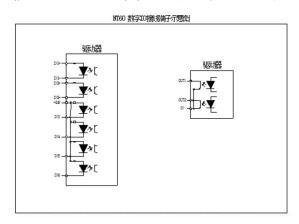
请勿超出上述规定使用范围。

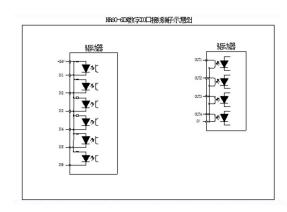
• 电源与电机

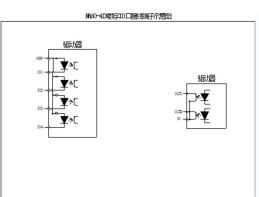
	型号		说明
ECT42	ECT60	ECT86	בקיטש
V	+	AC	对于 ECT42、ECT60,供电电源为直流供电,V+接电源正
V	/ _	AC	极,V-接电源负极。建议供电电压为 24~80VDC。 对于 ECT86,供电电源为交流、直流兼容供电,AC、AC 可以输入 24~100V 的直流电源,也可输入 24VAC~80VAC 的交流电源。 *上述电源电压为驱动器的极限值,由于步进电机反电动势的影响,客户在使用时需要预留一定的电压余量
А	+	A+	两相步进电机绕组接线端口,具体电机线连接请参考电机厂商
Д	\ -	Α-	说明。
В	+	B+	
В	3-	B-	
IN	1+	IN1+	编码器输入接口,具体编码器连接请参考电机厂商说明。
IN	1-	IN1-	
IN	2+	IN2+	
IN	2-	IN2-	

• 数字输入输出端口

ECT 系列由于 IN1 和 IN2 被分配用于正交编码器接口,所以无法再用于其他输

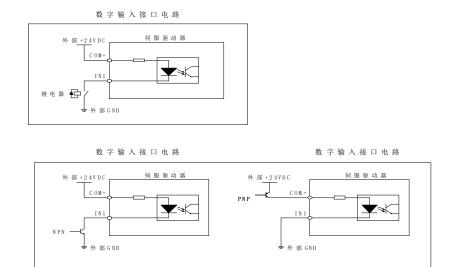

入端口功能,对于IN1、IN2的功能设置将不起作用。

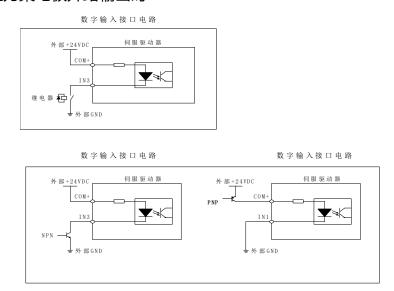

• 数字输入端口


ECT 系列 步进驱动器拥有 4 路数字输入口, 2 路数字输出口。对象字典 0x2007 为输入端口的功能设置, 0x2008 为输入端口的极性设置。

注意:IN1+/IN1-、IN2+/IN2-为电机编码器输入端子,请勿直接接高于此电压的输入信号,否则将造成驱动器损坏!

输入端口的示意图如下所示,用户可以根据该示意图进行系统接线。




IN3~IN6单端输入端子

以 IN3 为例说明, IN3~IN6接口电路相同。

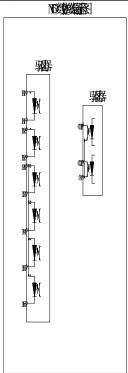
当上位装置为继电器输出时:

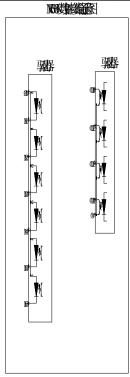
当上位装置为集电极开路输出时:

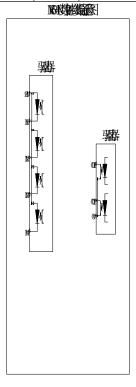
注意:不支持 PNP 输入

• 数字输出端口

ECT 系列包含两路光电隔离输出信号。

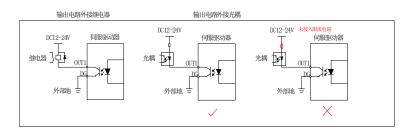

OUT1 的输出电流能力达 30mA。

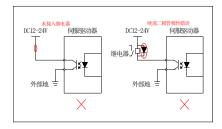

OUT2的输出电流能力达 150mA。


数字输出口默认情况下全部为常开点,可以通过对象字典 2005 选择输出端口

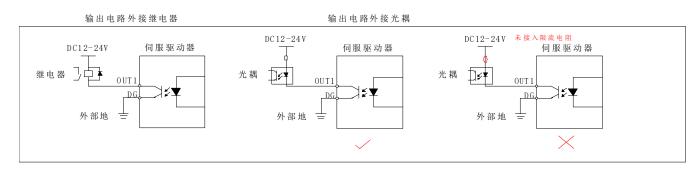
的功能,对象字典2006用于设设置输出端口的极性。

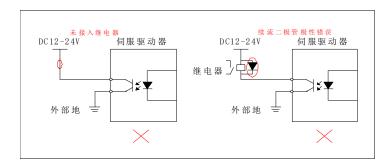
对象字典	名称	属性	类型	范围	默认	单位	备注
					值		
0x2005:	输出口1	R/W/S	UINT	0~3	1		输出端口功能选
01	功能						择:
0x2005 :	输出口 2	R/W/S	UINT	0~3	2		0 —— 自定义输
02	功能						出
							1 —— 报警输出
							2 —— 抱闸输出
							3 —— 到位输出
0x2006	输出口极	R/W/S	UINT	0~3	3		设置输出端口的常
	性设置						开,常闭特性
							0——常闭
	ANCH MARKET						1——常开

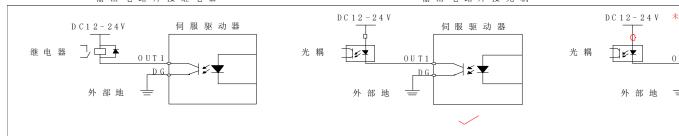


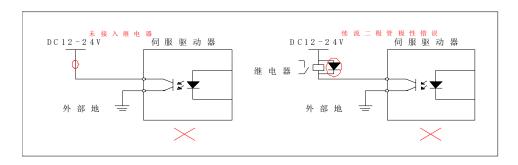


以 OUT1 为例说明, OUT1~OUT2 接口电路相同。


当上位装置为继电器输入时:

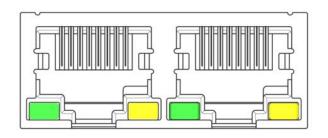

正确接线图:


错误接线图:



当上位装置为光耦输入时:

• 连接 EtherCAT


请使用 CAT5E (或者更高级别)的网线。

以太网输入接口 IN 与控制器或总线上的前一台驱动器的以太网输出接口 OUT 相连。以太网输出接口 OUT 与总线上的下一台驱动器的以太网输入接口 IN 相连。如果驱动器是总线上的最后一个节点,则只需连接以太网输入接口 IN。

• EtherCAT 状态指示灯

RJ45的黄灯用于 Link 状态,指示是否有网线连接。

RJ45 的绿灯用于 Activity 状态,指示是否有数据通讯。

RUN/ERRLED 指示灯:

LED	颜色	状态	描述
RUN	绿色	不亮	initialization 状态
		慢闪	pre-operational 状态
		单闪	safe-operational 状态
		常亮	operational 状态
ERR	红色	不亮	无错误
		慢闪	一般错误
		单闪	同步错误
		双闪	看门狗错误

快闪:亮50ms,灭50ms(10Hz)。如此循环。

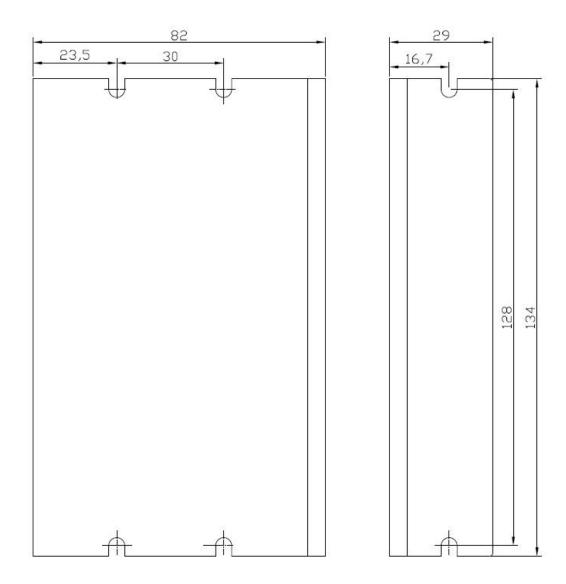
慢闪:亮 200ms,灭 200ms(2.5Hz)。如此循环。

单闪: 亮 200ms, 灭 1s。如此循环。

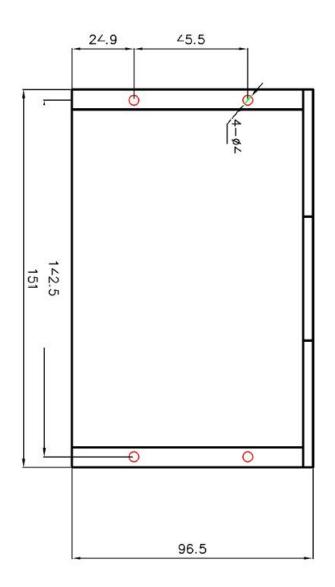
双闪: 亮 200ms, 灭 200ms, 亮 200ms, 灭 1s。如此循环。

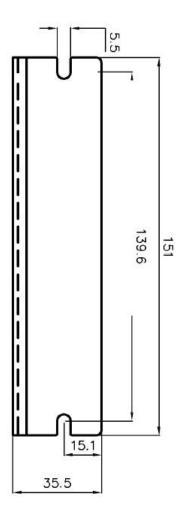
• EtherCAT 站点地址

ECT 系列支持两种种方法设置从站地址:对象字典 0x2150 设定站点别名和 ESC 设定站点别名,并通过对象字典 0x2151 来选择。


默认 0x2151 为 0 , 节点地址通过主站分配 , 保存至 EEPROM 中。 当用户需要自行设定固定地址时 , 需要将 0x2151 设置为 1 , 然后再 0x2150 中写入需要的地址值。

0x2151	0x2150	站点地址
0	1001	主站配置站点别名到 ESC 的 EEPROM 0x0004 字地址
1	设置值	对象字典 2150 设置值为节点地址值


• 报警代码


LED 状态	驱动器状态	
	绿灯长亮	驱动器未使能
	绿灯闪烁	驱动器工作正常
	1绿、1红	驱动器过流
	1绿、2红	驱动器输入电源过压
	1绿、3红	驱动器内部电压出错
	1绿、4红	编码器超差报警
	1绿、6红	参数校验错误

• 机械尺寸

ECT42、ECT60 安装尺寸

ECT86 安装尺寸

• 参数说明与设置

• 通用参数

• 0x1000 装置类型

Object Type Data Type Access Type PDO Mapping Default Val

VAR	UNSIGNED32	RO	NO	0x00040192

Bit 0~15: Device profile number 0x0192: CiA402

Bit 16~31: Additional information 0x0004: Stepper Drive

• 0x1001 装置名称

显示当前驱动器型号名称。

ECT42 功能上和 ECT60 一样,仅仅限制了驱动器的默认电流,防止用户匹配小电机时,没有第一时间修改驱动器的电流而导致电流过大,损毁驱动器和电机。在 0x1001 上,两者都显示" ECT60"

Object Type	Data Type	Access Type	PDO Mapping	Default Value
VAR	Visible string	RO	NO	ECR60

ECT60

Object Type	Data Type	Access Type	PDO Mapping	Default Value
VAR	Visible string	RO	NO	ECT60

• 0x1009 硬件版本

Object Type	Data Type	Access Type	PDO Mapping	Default Value
VAR	Visible string	RO	NO	0xA1

• 0x100A 软件版本

Object Type	Data Type	Access Type	PDO Mapping	Default Value
VAR	Visible string	RO	NO	0x101B

保存参数

对象字典 0x1010 的子索引:01 写入1,将保存当前参数。

在保存参数时,首先停止电机运行,然后再保存参数。

数据结构如下:

索引	子索引	名称	PDO 映射	默认值
1010	00	最大子索引数	No	1
	01	保存参数	No	0

• 恢复出厂设置

对象字典 0x1011 的子索引: 01 写入 1, 然后重新上电,将驱动器恢复为出厂状态。

在恢复出厂设置时,首先停止电机运行,然后再保存参数。

索引	子索引	名称	PDO 映射	默认值
1011	00	最大子索引数	No	1
	01	保存参数	No	0

• 制造商特定对象

• 0x2000 运行电流

对象字	名称	属性	类型	范围	默认值	单位
典						
0x2000	Peak Current	R/W/S	UINT	100~6000	3000	mA

该对象用于设定步进电机开环运行时的正弦峰值电流。

• 0x2001 细分/分辨率

对象字	名称	属性	类型	范围	默认值	单位

典						
0x2001	Motor	R/W/S	UINT	200~65535	10000	Pulse/rev
	Resolution					

该对象用于设定步进电机开环运行时,电机运行一圈所需要的脉冲数。

ECT60 默认工作于闭环模式,此时电机运行一圈所需要的脉冲数由 <u>0x2020 编</u>码器分辨率设置。

• 0x2002 待机时间

对象字	名称	属性	类型	范围	默认值	单位
典						
0x2002	Idle Time	R/W/S	UINT	200~65535	500	ms

该对象用于设定步进电机开环运行时,电机停止运行后,进入待机状态的时间。

• 0x2003 待机电流百分比

对象字典	名称	属性	类型	范围	默认值	单位
0x2003	Idle Current	R/W/S	UINT	0~100	50	%
	Percent					

该对象用于设定步进电机开环运行时,电机停止运行进入待机状态时,保持电流相对于 0x2000 所设定的运行电流的百分比。

• 0x2005 输出端口功能

对象字典	名称	属性	类型	范围	默认值	单位
0x2005:01	Output 1	R/W/S	UINT	0~3	1	

	Function					
0x2005:02	Output 2	R/W/S	UINT	0~3	2	
	Function					

ECT 系列包含两个输出端口,该对象用于设定输出端口对应的功能。

端口功能定义如下:

值	功能			
0	自定义输出			
1	报警输出			
2	抱闸输出			
3	到位输出			

当设置为自定义输出时,该端口的状态可以通过 0x2006 的极性设置来控制。

• 0x2006 输出端口极性

对象字典	名称	属性	类型	范围	默认值	单位
0x2006	Outputs	R/W/S	UINT	0~3	3	
	Polarity					

设置输出端口的常开,常闭特性: Bit0 为输出口 1 极性设置, Bit1 为输出口 2 极性设置。

0——常闭

1——常开

Bit15~bit2	Bit1	Bit0
	OUT2	OUT1

• 0x2007 输入端口功能

对象字典	名称	属性	类型	范围	默认值	单位
0x2007:03	Input 3	R/W/S	UINT	0~8	1	
	Function					
0x2007:04	Input 4	R/W/S	UINT	0~8	2	
	Function					
0x2007:05	Input 5	R/W/S	UINT	0~8	3	
	Function					
0x2007:06	Input 6Function	R/W/S	UINT	0~8	6	

ECT60 包含 4 个输入端口,该对象用于设定输入端口对应的功能。

功能
通用输入口
CW 限位输入
CCW 限位输入
HOME 输入
清除故障
急停信号
电机脱机
探针 1
探针 2

输入端口的状态可以通过 Ox60FD 对象读取。

输入端口的极性可以通过 <u>0x2008</u> 对象设置。

• 0x2008 输入端口极性

对象字典	名称	属性	类型	范围	默认值	单位
0x2008	Inputs Polarity	R/W/S	UINT	0~3F	0x3F	

每一位定义相应端口的极性。Bit 0 定义输入口 1 的极性:

Bit15~bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	IN6	IN5	IN4	IN3	IN2	IN1

0——常闭,1——常开

• 0x2009 滤波时间

对象字典	名称	属性	类型	范围	默认值	单位
0x2009	Filter Time	R/W/S	UINT	0~25600	6400	us

ECT60 内置一个滑动平均滤波器,此对象用于设置滑动平均滤波器的时间。滤波时间越大,能够让电机启停更加平稳,但电机的响应滞后越大。

滞后时间 = 滤波时间

• 0x200A 锁轴时间

对象字典	名称	属性	类型	范围	默认值	单位
0x2009	Soft lock	R/W/S	UINT	0~65535	1000	50us
	Time					

ECT60 在使能时,需要锁定步进电机进行初始定位,为了减小初始定位的抖动,ECT60 内置斜坡锁轴功能。此对象用于设定电机使能时,电机锁轴的斜坡时间。

锁轴时间 = 设定值*50us*2 = 设定值*100us

• 0x200B 电流环参数

对象字典	名称	属性	类型	范围	默认值	备注
0x200B:01	AutoPl	R/W/S	UINT	0~1	1	驱动器初次定位的同
	enable					时识别电机参数,并
						自动计算 PI 增益
						0 不使能; 1 使
						能
0x200B:02	lloop_Kp	R/W/S	UINT	100~	1000	0x200B:01为1的
				65535		时候,此寄存器不可
0x200B:03	Iloop_Ki	R/W/S	UINT	0~	200	设置。
				10000		为0时,可以用户设
						置
0x200B:04	lloop_Kc	R/W/S	UINT	0~1024	256	抗积分饱和系数。

ECT60 采用电流控制实现步进电机的细分运行。ECT60 默认采用自动识别参数算法,识别电机的电气参数,自动计算出合适的电流环 PI 参数。当自动识别的PI 参数不能满足要求时,用户可以自行设定参数。

• 0x200C 电机参数

对象字典	名称	属性	类型	范围	默认值	备注
0x200C:01	Motor type	R/W/S	UINT	0~1	0	0——两相步进电
						机
						1——三相步进电
						机

0x200C:02	Resistance	R	UINT	100~	1000	自动 PI 开启时 ,
	Auto			65535		识别得到电机绕
						组电阻值。
						单位:mOhm
0x200C:03	Inductance	R	UINT	0~	1	自动 PI 开启时 ,
	Auto			10		识别得到电机绕
						组电感值。
						单位:mH
0x200C:04	Resistance Set	R/W/S	UINT	0~	1000	电机绕组电阻值
				10000		单位:mOhm
0x200C:05	Inductance Set	R/W/S	UINT	1~10	1	电机绕组电感值
						单位:mH
0x200C:06	BEMF	R/W/S	UINT	0~1000	256	ECT60
	coefficient					

伺服模式 1:

ECT60 工作于伺服模式 1 时,电机参数本身不参与电机控制,用户无需特别设定。用户可以通过检查本对象的自识别电阻、电感值,来判断电机的连接是否正常。

伺服模式2:

ECT60 工作于伺服模式 2 时,闭环步进电机处于 FOC 控制模式。由于步进电机的特殊结构,为了进行 FOC 控制,需要进行弱磁控制。弱磁控制参数由电机的电阻、电感及反电动势系数估计得到。

通常自动估计的电阻和电感能够满足需求,用户也可以依据电机厂商的电机参

数自行设置电阻于电感。反电动势系数的计算可以采用以下公式计算:

0x200C:06 = (额定力矩 (N.M) /额定电流(A)) *500

• 0x200D 运行反向

对象字典	名称	属性	类型	范围	默认值	单位
0x200D	Invert motor	R/W/S	UINT	0~1	0	
	direction					

如果电机运行正方向与系统需求不一致时,该对象可以在不修改电机接线的情况下,使电机的运行方向取反。

• 0x200E 内部报警代码

对象字典	名称	属性	类型	默认值
0x200E	Alarm Code	R	UINT	0

此对象显示驱动器当前的故障代码,对象的每一个位对应一个报警状态。

报警代码	报警状态
0x0001	内部电压错误
0x0002	过流
0x0004	过压
0x0008	保留
0x0080	位置误差超差
其他	保留

当发生上述故障时,在消除故障条件以后,通过在 0x6040 对象写入 0x80,将 清除 0x603F 和 0x200E 的故障代码。

• 0x200F 内部状态代码

对象字典	名称	属性	类型	默认值
0x200F	Status Code	R	UINT	0

此对象显示驱动器当前的状态代码,对象的每一个位对应一个状态。

状态代码	状态
0x0001	驱动器使能
0x0002	驱动器发生故障
0x0004	到位信号,保留
0x0008	电机是否运行还是停止
0x0010	回零是否完成
0x0020	驱动器准备好
其他	保留

• 0x2010 位置清零

对象字典	名称	属性	类型	范围	默认值	单位
0x2010	Zero Position	R/W	UINT	0~1	0	

将对象设置为 01h 可以清除 0x6064 中的位置值(位置实际值)。

通常用于电机朝着一个方向一直运动的场合,用户需要在适当的时候停止电机,通过此对象清除实际位置值,然后再次使能电机。否则电机位置计数器有饱和的问题。

• 0x2011 控制模式

对象字典	名称	属性	类型	范围	默认值	单位

0x2011	Control mode	R/W/S	UINT	0~2	0	

设置步进电机的工作模式。

0—— 开环运行

1——闭环运行

2——闭环运行/FOC 模式

ECR60 仅能工作在开环模式,设置其他值无效。

• 0x2020 编码器分辨率

对象字典	名称	属性	类型	范围	默认值	单位
0x2020	Encoder	R/W/S	UINT	1000~65535	4000	Pulse/rev
	Resolution					

步进电机的工作模式为闭环时,需要设置电机运行一转对应的编码器分辨率。

此参数设置后,需要保存,重新上电才能生效。仅ECT系列产品有效。

• 0x2021 编码器位置

对象字典	名称	属性	类型	范围	默认值	单位
0x2021	Encoder	R	UINT	1000~65535	0	Pulse/rev
	Counter in one					
	rev					

此对象反应当前电机在一圈中的位置。仅 ECT 系列产品有效。

• 0x2022 位置超差报警阈值

对象字典	名称	属性	类型	范围	默认值	单位
0x2022	Position Trae	R/W/S	UINT	1000~65535	4000	Pulse/rev
	Error Limit					

步进电机的工作模式为闭环时,位置误差超过此设定值时,电机将报警,断开

使能。此参数设置后,立刻生效。 仅 ECT 系列产品有效。

• 0x2023 伺服模式 1 控制参数

对象字典	名称	属性	类型	范围	默认值	备注
0x2023 :	PosLoop_Kp	R/W/S	UINT	0~	2000	比例增益:调
01				10000		整电机位置响
						应刚性
0x2023 :	PosLoop_Ki	R/W/S	UINT	0~	100	积分增益,用
02				1000		于消除电机静
						止时的位置误
						差。
0x2023 :	PosLoop_Kd	R/W/S	UINT	0~	200	
03				10000		
0x2023 :	PosLoop_Kvff	R/W/S	UINT	0~100	30	速度补偿
04						
0x2023 :	PosLoop_Kdi	R/W/S	UINT	0~500	0	用于消除低速
05						共振
						通常此增益不
						能大于 200

此对象仅对 ECT60 采用伺服模式 1 进行闭环控制时生效。增益通常采用默认即可。

• 0x2024 到位信号

对象字典	名称	属性	类型	范围	默认值	备注

0x2024:	InPosMode	R/W/S	UINT	0~10000	2000	到位信号判定模式
01						0——任何时候都检
						测
						1——脉冲指令停止
						后检测
0x2024 :	InPosCnt	R/W/S	UINT	0~1000	100	当位置误差小于设
02						定的脉冲数值,并
0x2024 :	InPosTime	R/W/S	UINT	0~10000	200	持续设定的到位时
03						间时,判定为到
						位。

此对象在 ECT60 的闭环模式下生效,用于检测电机是否在设定的精度范围内。

• 0x2025 伺服速度滤波器

对象字典	名称	属性	类型	范围	默认值	备注
0x2025 :	FV1_HZ	R/W/S	UINT	0~1000	200	设置伺服模式
01						2 时的滤波器
0x2025 :	FV2_HZ	R/W/S	UINT	0~2000	600	
02						
0x2025 :	FPOUT_HZ	R/W/S	UINT	0~5000	5000	
03						

此对象在 ECT60 伺服模式 2 条件下生效,用于设定速度环反馈参数的带宽 FV1_HZ 用于设定速度反馈滤波一次低通滤波带宽。

FV2_HZ 用于设定速度反馈滤波二次低通滤波带宽。通常设置 FV2HZ = 3* FV1_HZ

FPOUT_HZ 用于设定 FOC 速度环数输出变量的带宽,通常采用默认值。

• 0x2026 伺服模式 2 控制参数

对象字典	名称	属性	类型	范围	默认值	备注
0x2026 :	PVIA_Kp	R/W/S	UINT	0~	2000	位置比例增益:调整
01				10000		电机位置响应刚性
0x2026 :	PVIA_Ki	R/W/S	UINT	0~	100	积分增益,用于消除
02				1000		电机静止时的位置误
						差。
0x2026 :	PVIA_Kv1	R/W/S	UINT	0~	200	速度反馈增益 1
03				10000		
0x2026 :	PVIA_Kv2	R/W/S	UINT	0~100	30	速度反馈增益 2
04						
0x2026 :	PVIA_Kvff	R/W/S	UINT	0~500	0	速度前馈增益 1
05						

此对象在 ECT60 采用伺服模式 2 条件下生效,采用矢量控制算法。

通常 PVIA_Kv1+ PVIA_Kv2 > PVIA_Kvff

• 0x2043 速度给定

对象字典	名称	属性	类型	范围	默认值	单位
0x2043	Speed	R	UINT	-3000~3000	0	RPM
	Reference					

此对象反应当前电机的给定转速。

• 0x2044 速度反馈

对象字典	名称	属性	类型	范围	默认值	单位

0x2044	Speed	R	UINT	-3000~3000	0	RPM
	Feedback					

此对象反应当前电机的实际转速。

ECT60 返回的是实际转速, ECR60 返回的值 = 给定速度。

· 0x2048 电压

对象字典	名称	属性	类型	范围	默认值	单位
0x2048	Bus Voltage	R	UINT		0	10mV

母线电压值(V) = 对象值 /100;

• 0x2049 输入电平

对象字典	名称	属性	类型	范围	默认值	单位
0x2049	Input Level	R	UINT		0	

显示当前 IO 输入的物理电平

Bit15~bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	IN6	IN5	IN4	IN3	IN2	IN1

0——无输入信号

1——有输入信号

• 0x204A 输出电平

对象字典	名称	属性	类型	范围	默认值	単位
0x204A	Output Level	R	UINT		0	

显示当前输出端口的物理电平

Bit15~bit2	Bit1	Bit0

 OUT2	OUT1

- 0——表示当前输出端口有输出
- 1——表示当前输出端口无输出

• 0x2060 第一共振点谐波幅值

对象字典	名称	属性	类型	范围	默认	单位
					值	
0x2060	Amplitude of First Anti-	R/W/S	UINT	0-1000	0	
	Vibration					

用于消除两相步进电机的第一共振点的振动。此方法通过在设定电流基础上增加一定的谐波,来抵消共振。需要调整谐波的幅值和相位来消除振动。

• 0x2061 第一共振点 A 相谐波相位

对象字典	名称	属性	类型	范围	默认	单位
					值	
0x2061	Phase A of First Anti-	R/W/S	UINT	0-1024	0	
	Vibration					

调整 A 相绕组的谐波相位

• 0x2062 第一共振点 B 相谐波相位

对象字典	名称	属性	类型	范围	默认	単位
					值	
0x2062	Phase B of First Anti-	R	UINT	0-1024	0	
	Vibration					

调整 B 相绕组的谐波相位

· CIA402 对象字典

• 0x603F 故障代码

对象字典	名称	属性	类型	范围	默认值
0x603F	Error Code	RW	UINT		0

当发生故障时,首先消除故障条件,然后往控制字 0x6040 写入 0x0080,清除 0x603F。

故障代码如下:

Error Code	描述
0x7500	通讯故障
0x3150	A 相电路内部电压错误
0x3151	B 相电路内部电压错误
0x8611	闭环模式跟踪误差超限
0x2211	过流
0x3110	过压

• 0x6040 控制字

此对象用于控制驱动器和运动的状态。可以使能/禁止驱动器;电机的启动、停止;清除故障等。

对象字典	名称	属性	类型	范围	默认值
0x6040	Control	RW	UINT		0
	Word				

控制字的位定义如下:

Bit	描述
DIL	田位
0	Switch ON
1	Enable Voltage
2	Quick Stop
3	Enable Operation
4	操作模式相关
5	操作模式相关
6	操作模式相关
7	故障复位
8	暂停
9	操作模式相关
10-15	保留

Bit 0~3 和 Bit7 的详细组合说明:

命令			控制字位		
	Bit7	Bit3	Bit2	Bit1	Bit0
Shutdown	0	х	1	1	0
Switch on	0	0	1	1	1
Switch on + Enable	0	1	1	1	1
operation					

Disable voltage	0	х	Х	0	х
Quick stop	0	х	0	1	х
Disable Operation	0	0	1	1	1
Enable Operation	0	1	1	1	1
Fault reset	0->1	х	Х	Х	Х

Bit4、5、6、8、9的在相关模式下的定义

PP 模式

Bit	名称	值	描述
4	一个新的目标位置	0->1	由 0 改为 1,设定一个新的目标位置
5	保留		
6	绝对/相对	0	绝对位置模式
		1	相对位置模式
8	暂停	0	电机等待完成定位
		1	停止运行
9	保留		

PV 模式

Bit	名称	值	描述
8	暂停/运行	0	电机运行至设定速度
		1	电机减速至 0 , 并停止

回零模式

Bit	名称	值	描述
4	启动回零	0->1	启动回零
8	暂停	0	受 bit4 控制
		1	停止回零

• 0x6041 状态字

此对象设置探针功能。

Object Type	Data Type	Access Type	PDO Mapping	Default Value
VAR	UNSIGNED16	RW	Yes	0

寄存器位定义如下:

Bit	描述
0	Ready To Switch ON
1	Switch ON
2	Operation Enabled
3	Fault
4	Voltage Enabled
5	Quick Stop
6	Switch On Disabled
7	Warning
8	保留
9	Remote

10	目标到达
11-15	保留

Bit 9: Remote

显示控制字是否被设置了。This bit indicates Control word has settled.

• 0x6060 操作模式

用于设定操作模式。

对象字典	名称	属性	类型	范围	默认值
0x6060	Mode of Operation	RW	INTEGER8		0

EC 系列驱动器支持下列操作模式:

值	模式
1	Profile Position Mode (PP)
3	Profile Velocity Mode (PV)
6	Homing Mode (HM)
8	Cyclic Synchronous Position Mode (CSP)

• 0x6061 操作模式显示

显示当前的操作模式, 定义同 0x6060。

对象字典	名称	属性	类型	范围	默认值
0x6061	Mode of Operation Display	R	INTEGER8		0

• 0x6064 实际位置

显示当前电机的实际位置,单位为 Pulse

对象字典	名称	属性	类型	范围	默认值
0x6064	Position Actual Value	R	INTEGER32		0

• 0x606C 实际速度

显示当前电机的实际速度,单位为 RPM

对象字典	名称	属性	类型	范围	默认值
0x606C	Position Actual Velocity	R	UINT		0

• 0x607A 目标位置

此对象设定 PP 模式和 CSP 模式下的目标位置。单位为 Pulse。

对象字典	名称	属性	类型	范围	默认值
0x607A	Profile Target Position	RW	INTEGER32		0

在 PP 模式下, 控制字的 Bit6(0x6040.6)用来设定坐标是相对。

在 CSP 模式下,此目标位置都是绝对位置模式。

• 0x607C 零点偏置

此对象用于设定零点传感器与位置 0 的偏移。单位为 Pulse。

对象字典	名称	属性	类型	范围	默认值
0x607C	Home Offset	RW	INTEGER32		0

• 0x6081 轨迹速度

此对象用于设定 PP 模式的梯形加减速指令的最大速度。单位为 Pulse/s

对象字典	名称	属性	类型	范围	默认值
0x6081	Profile Velocity	RW	INTEGER32		10000

• 0x6083 轨迹加速度

此对象用于设定 PP 模式、PV 模式时,梯形加减速指令的加速度,单位为

Pulse/s^2

对象字典	名称	属性	类型	范围	默认值
0x6083	Profile Acceleration	RW	INTEGER32		100000

• 0x6084 轨迹减速度

此对象用于设定 PP 模式、PV 模式时,梯形加减速指令的减速度,单位为

Pulse/s^2

对象字典	名称	属性	类型	范围	默认值
0x6084	Profile Deceleration	RW	INTEGER32		100000

• 0x6085 快速停止减速度

此对象用于设定 PP 模式、PV 模式、HOME 模式时,碰到限位,零点等传感器时,电机停止的减速度。单位为 Pulse/s。

对象字典	名称	属性	类型	范围	默认值
0x6085	Quickstop Declaration	RW	INTEGER32		500000

• 0x6098 回零方法

此对象用于设定电机回零的方法。

对象字典	名称	属性	类型	范围	默认值
0x6098	Homing Method	RW	INTEGER8	17~35	17

具体描述参考回零模式。

• 0x6099 回零速度

此对象设置电机回零时的速度。

对象字典	名称	属性	类型	范围	默认值	单位
0x6099:01	Homing	R/W/S	UNSIGNED32		10000	Pulse/s
	Velocity (fast)					
0x6099:02	Homing	R/W/S	UNSIGNED32		2000	Pulse/s
	Velocity (slow)					

• 0x609A 回零加速度

此对象用于设定电机回零时位置曲线的加速度和减速度。单位为 Pulse/s^2。

对象字典	名称	属性	类型	范围	默认值
0x609A	Homing Acceleration	RW	UNSIGNED32		100000

• 0x60B8 探针功能设置

此对象设置探针功能。

Object Type	Data Type	Access Type	PDO Mapping	Default Value
VAR	UNSIGNED16	RW	Yes	0

寄存器位定义如下:

Bit	Value	Definition
0	0	探针 1 禁止
	1	探针 1 使能
1		保留
2		保留
3		保留
4	0	禁止探针 1 下降沿锁存
	1	使能探针 1 上升沿锁存
5	0	禁止探针 1 下降沿锁存
	1	使能探针 1 下降沿锁存
6		保留
7		保留

8	0	探针 2 禁止
	1	探针 2 使能
9		保留
10		保留
11		保留
12	0	禁止探针 2 下降沿锁存
	1	使能探针 2 上升沿锁存
13	0	禁止探针 2 下降沿锁存
	1	使能探针 2 下降沿锁存
14		保留
15		保留

正位置锁存于上升沿时刻,负位置锁存于下降沿时刻。

• 0x60B9 探针状态

此对象定义探针功能状态。

Object Type	Data Type	Access Type	PDO Mapping	Default Value
VAR	UNSIGNED16	R	Yes	0

状态位定义如下:

Bit	Value	Definition
0	0	探针 1 禁止
	1	探针 1 使能
1	0	探针 1 上升沿锁存:无
	1	探针 1 上升沿锁存:有

2	0	探针 1 下降沿锁存:无
	1	探针 1 下降沿锁存:有
3-7	0	保留
8	0	探针 2 禁止
	1	探针 2 使能
9	0	探针 2 上升沿锁存:无
	1	探针 2 上升沿锁存:有
10	0	探针 2 下降沿锁存:无
	1	探针 2 下降沿锁存:有
11-15	0	保留

• 0x60BA 探针 1 正锁存值

此对象保存探针 1 上升沿锁存的位置。

Object Type	Data Type	Access Type	PDO Mapping	Default Value
VAR	UNSIGNED32	R	Yes	0

• 0x60BB 探针 1 负锁存值

此对象保存探针1下降沿锁存的位置。

Object Type	Data Type	Access Type	PDO Mapping	Default Value
VAR	UNSIGNED32	R	Yes	0

• 0x60BC 探针 2 正锁存值

此对象保存探针 2 上升沿锁存的位置。

Object Type	Data Type	Access Type	PDO Mapping	Default Value
VAR	UNSIGNED32	R	Yes	0

• 0x60BD 探针 2 负锁存值

此对象保存探针 2 下降沿锁存的位置。

Object Type	Data Type	Access Type	PDO Mapping	Default Value
VAR	UNSIGNED32	R	Yes	0

0x60FD Digital Inputs

此对象监控驱动器的输入端口。

Object Type	Data Type	Access Type	PDO Mapping	Default Value
VAR	UNSIGNED32	RO	Yes	0x00000000

Bit0	CW 限位	0——无效
Bit1	CCW 限位	1——限位生效
Bit2	HOME	0——零点无效
		1——零点有效
Bit3~ Bit15		保留
Bit16	IN1	输入端口的物理状态
Bit17	IN2	0 —— 输入信号无效
Bit18	IN3	1 —— 输入信号有效
Bit19	IN4	
Bit20	IN5	
Bit21	IN6	
Bit22~Bit31	保留	

•

0x60FF PV 模式速度设置

此对象设置 PV 模式时的速度,单位为 Pulse/s

对象字典	名称	属性	类型	范围	默认值	单位
------	----	----	----	----	-----	----

0x60FF	Target	RW	DINT	0	Pulse/s
	Velocity				

此对象为 32 位有符号数据,正值和负值分别代表电机运行的两个方向。

• 0x6502 支持的操作模式

此对象描述驱动器支持的操作模式。

对象字典	名称	属性	类型	范围	默认值	单位
0x6052	Supported Drive	R	UDINT		0x000000A5(165)	
	Modes					

位定义如下:

XH I i	
Bit	Description
0	PP : Profile Position Mode
1	VI: Velocity Mode
2	PV: Profile Velocity Mode
3	TQ: Torque Profile Mode
4	reserved
5	HM: Homing Mode
6	IP: Interpolated Position Mode
7	CSP: Cyclic Sync Position Mode
8	CSV: Cyclic Sync Velocity Mode
9	Cyclic Sync Torque Mode
10-31	保留

Bit 值 = 1: 支持

EC 系列步进驱动器支持 PP, PV, HM, CSP modes。

• CIA402 运动控制

• 操作模式

ECR 系列 EtherCAT 步进驱动器支持以下操作模式(0x6060):

Profile Position (PP)

Profile Velocity (PV)

Cyclic Synchronous Position (CSP)

Homing (HM)

• PP 轨迹位置模式

轨迹位置模式描述:

标准位置模式是一种点对点操作模式,它使用由速度、加速度、减速度和目标位置组成的设定点.一旦设置了所有这些参数,驱动器将缓存这些命令并开始执行设定点。

使能轨迹位置模式

要使能轨迹位置模式,必须将对象字典 6060h(操作模式)的值设置为 0001h。可以通过对象字典 6061h(操作模式显示),来确认驱动器是否进入了正确的操作模式。

设置运行参数

使用对象字典 607Ah, 6081h, 6083h, 6084h 来分别设置位置、速度、加速

度、减速度。

启动与停止

上电以后,驱动器处于不使能状态。控制字 6040h 写入 0006h,将使驱动器进入 "ready to switch on"状态。

通过发送 001Fh 到控制字的对象字典 6040h,来指示一个新的设置点和开始运动。

要启用驱动器操作,必须将值 001Fh 写入控制字的对象字典地址 6040 h。这也意味着有一个新的设定点准备好了。驱动程序使用状态字(6041h)的 Bit 12 来指示接收到有效的设置点。因为设置点是边缘触发的,一旦驱动器接收和处理设置点,控制字必须通过将 000FH 写入控制字寄存器来清除。

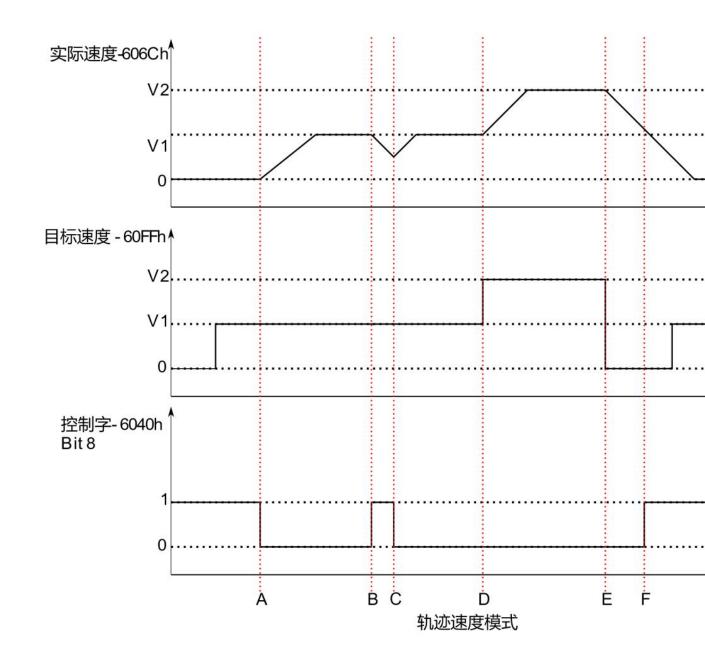
控制字相关位 Controlword Bits

新设定点(bit 4) - set this bit high to clock in a new set-point. 一旦驱动器接收到了设定点,状态字的 Bit12 将会被设置为高(1),控制字的 bit4 需要设置为 0;

设定点更改 (bit 9) - 如果为低,驱动器执行完当前设定点以后,进入空闲状态,等待下一个新的设定点。如果为高,驱动器将以上一次设定的速度运行完上一次的设定点,然后切换至新的速度并运行到新的设定点。

设定点立刻生效(bit 5) - 如果此位为高,新的设定点立刻生效,电机将以新设定点的速度运行至新的位置。

绝对模式/相对模式 (bit 6) - 如果为高,设定点为相对位置模式。例如,如果前面的电机位置是 10000 步,并且新的设定点是 20000,则最终位置将是 30000。如果为低,设定点位绝对位置模式。如果以前的电机位置是 10000,


并且新设定的位置为 20000, 那么新的位置将是 20000。(从前一位置到新位置的距离为 10000 步)。不要在电机移动时改变这个位。

• PV 轨迹速度模式

轨迹速度模式描述

轨迹速度模式是一种相对简单的操作模式。一旦设定了速度、加速和减速度,驱动器就会根据加速度参数命令电机加速到运行速度,或者根据减速度参数停止运动。

下图显示了配置速度模式的示例。

上图显示了电机运行状态,实际速度,目标速度和控制字的对应关系。

	目标速度	6040h 停止位 Bit4	电机运动状态
开始	0	1	电机停止
А	V1	1 -> 0	电机加速至 V1
В	V1	0 ->1	电机减速至停止
С	V1	1 -> 0	电机还没停止,又加速至 V1

D	V1 -> V2	0	电机从 V1 加速至 V2
E	V2 -> 0	0	电机从 V2 减速至 0
F	0	0 -> 1	电机停止
G	0 -> V1	1	电机停止

上表解释了如何将停止位和目标速度一起用于影响电机速度。在 B 点和 C 点之间, 电机不是完全停止, 而是按照在点 B 处开始的轨迹减速度值进行减速。当在点 C 处停止位转换时,它立即加速回到目标速度。在点 E 处,将目标速度降低到零与使用停止位的效果相同。

应该注意的是,无论是使停止位和将目标速度设置为零,都将有力矩保持在电机上。如果要使轴自由运动,必须放置驱动器的状态处于驱动器禁用(不使能)状态。

使能轨迹速度模式

要使能轨迹位置模式,必须将对象字典 6060h(操作模式)的值设置为 0003h。可以通过对象字典 6061h(操作模式显示),来确认驱动器是否进入了正确的操作模式。

设置运行参数

使用对象字典 60FFh, 6083h, 6084h 来分别设置轨迹速度模式的速度、加速度、减速度。

使能驱动器

上电以后,驱动器处于不使能状态。控制字 6040h 写入 0006h,将使驱动器进入 "ready to switch on"状态。再往 6040h 写入 010Fh,使得驱动器进入 "Operation Enabled"状态,电机处于停止运行状态。

启动与停止

要开始和停止运动,切换控制字停止位(bit 8 位)。当停止位设置为 0 时 (000Fh),运动将开始或继续;当停止位设置为 1 (010Fh)时,运动将停止。轨迹速度(60FFh)大于零表示电机正转,小于零表示电机反转,等于零表示电机停止。用户可以在电机正转时,直接设置电机进入反转状态,电机将减速停止并反向加速至设定速度。

· CSP 同步位置模式

同步位置模式描述

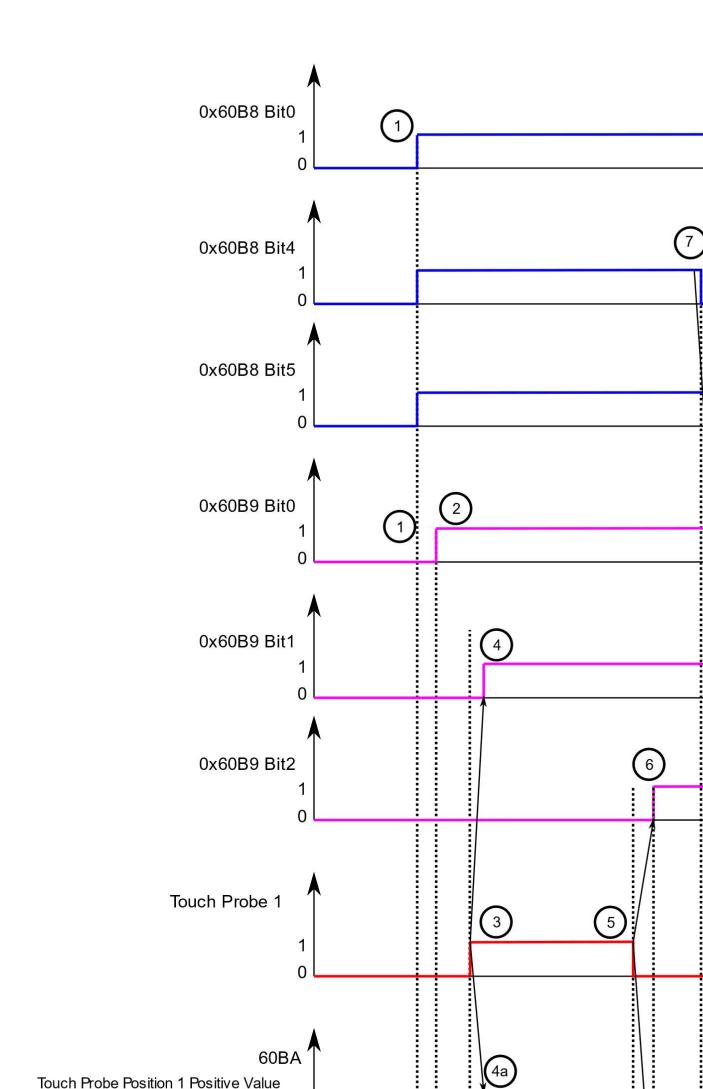
在这种模式下,主控制器生成位置轨迹,并在每个 PDO 更新周期将目标位置 (0x607A)发送到驱动器。驱动器反馈实际的电机位置和可选的实际电机速度和 转矩。

使能 CSP 模式

要启用循环同步位置模式,必须将值0008h写入位于字典地址6060 h。

使能驱动器

上电以后,驱动器处于不使能状态。控制字 6040h 写入 0006h,将使驱动器进入 "ready to switch on"状态。再次将值 0x000F 写入 6040h,驱动器将处于使能状态,电机能够响应 CSP 指令。


• 探针功能

探针功能通过数字输入口锁存电机位置信息。ECR60的数字输入端口功能和极

性可以通过 <u>0x2007</u>、 <u>0x2008</u> 自行定义。

探针功能相关对象字典如下:

Index	对象说明	
<u>0x60B8</u>	探针功能设置	Touch Probe Function
<u>0x60B9</u>	探针状态	Touch Probe Status
0x60BA	探针 1 上升沿锁存	Touch Probe Position 1 Positive Value
	位置	
0x60BB	探针 1 下降沿锁存	Touch Probe Position 1 Negative Value
	位置	
0x60BC	探针 2 上升沿锁存	Touch Probe Position 2 Positive Value
	位置	
0x60BD	探针 2 下降沿锁存	Touch Probe Position 2 Negative Value
	位置	

探针时序图

序号	寄存器变化	探针动作	
1	60B8 Bit 0 = 1	使能探针 1	
	60B8 Bit 1,4,5	配置使能探针上升沿和下降沿	
2	-> 60B9 Bit 0 = 1	状态"探针1使能"被置位	
3		外部探针信号上升沿	
4	-> 60B9 Bit 1 = 1	状态"探针1上升沿锁存"被置位	
4a	-> 60BA	探针 1 正位置被锁存	
5		外部探针信号下降沿	
6	-> 60B9 Bit 2 = 1	状态"探针1下降沿锁存"被置位	
6a	-> 60BB	探针 1 负位置被锁存	
7	-> 60B8 Bit: 4	上升沿锁存功能:禁止	
8	-> 60B9 Bit 0 = 0	状态"探针1上升沿锁存"被清除	
8a	-> 60BA	探针 1 正位置,锁存位置无变化	
9	-> 60B8 Bit 4 = 1	上升沿锁存功能: 使能	
10	-> 60BA	探针 1 正位置, 锁存位置无变化	
11		外部探针信号上升沿	
12	-> 60B9 Bit 1 = 1	状态"探针1上升沿锁存"被置位	
12a	-> 60BA	探针 1 正位置被锁存	
13	-> 60B8 Bit 0 = 0	探针 1 功能:禁止	
14	-> 60B9 Bit 0,1,2 = 0	状态位被清除	
14a	-> 60BA,60BB	探针 1 正/负锁存位置无变化	

探针时序说明

• 回零模式

设置回零参数

设置回零速度,加速度,零点偏移及相关感应器输入信号。

相关对象字典如下:

对象字典	说明
0x607C	零点偏移
0x6098	回零方法设定
0x6099	回零速度
0x609A	回零加减速
0x2007	输入端口功能选择
0x2008	输入端口极性设置

使能回零功能:

要使能回零模式,必须将对象字典 6060h(操作模式)的值设置为 0006h。可以通过对象字典 6061h(操作模式显示),来确认驱动器是否进入了正确的操作模式。

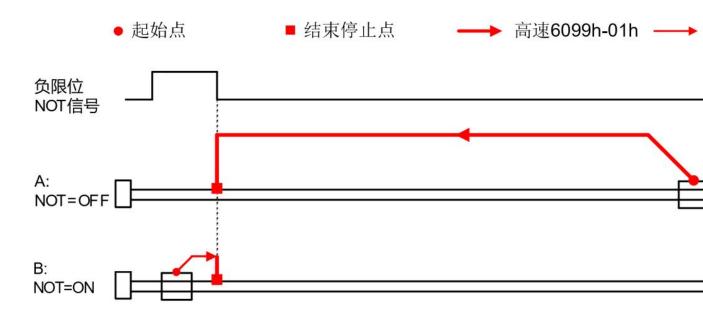
驱动器初始上电后,处于不使能状态。对控制字 6040h 写入 6,将驱动器设置于 "ready to switch on "状态,然后对控制字 6040h 写入 000Fh,将驱动器设置为" Operation Enabled Mode"。

启动回零功能:

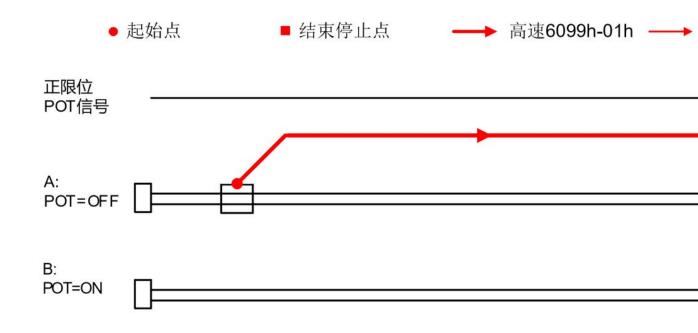
通过 6098h 对象字典设置好回零方法。

通过 0x6099 设置好回零的速度。

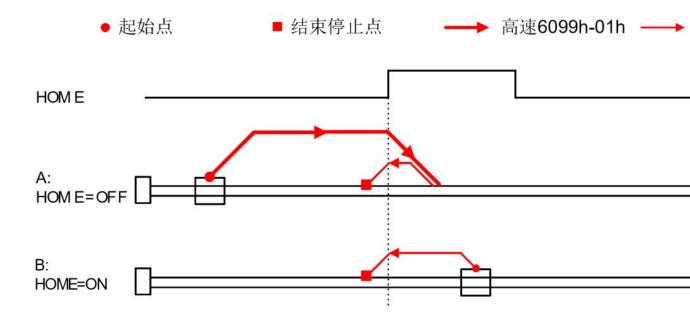
通过控制字 6040h 的 Bit4,从 0 到 1 的上升沿,可以启动回零。回零的状态通过 6041 状态字查询。

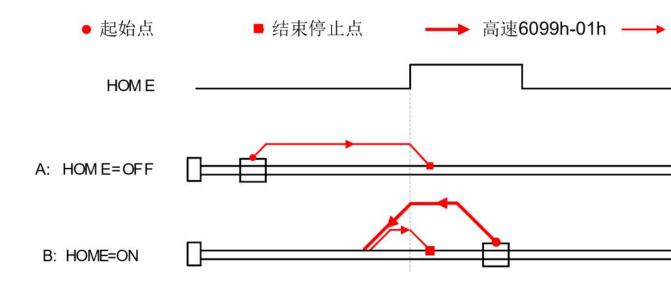

中止回零功能:

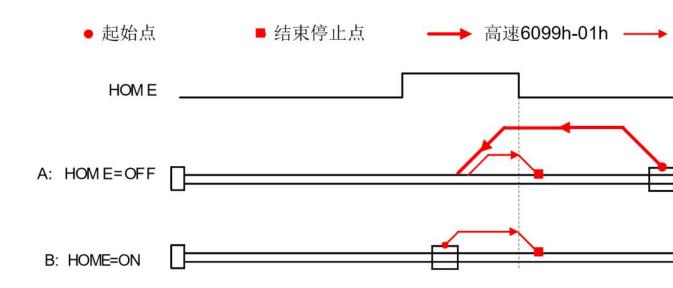
通过 6098h 对象字典设置好回零方法。通过控制字 6040h 的 Bit8,从 0 到 1 的上升沿,可以中止回零。回零的状态通过 6041 状态字查询。

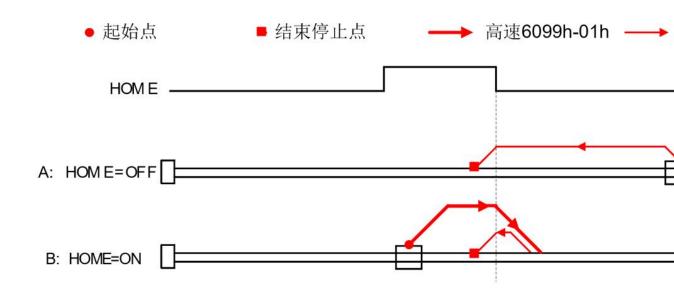

回零方法

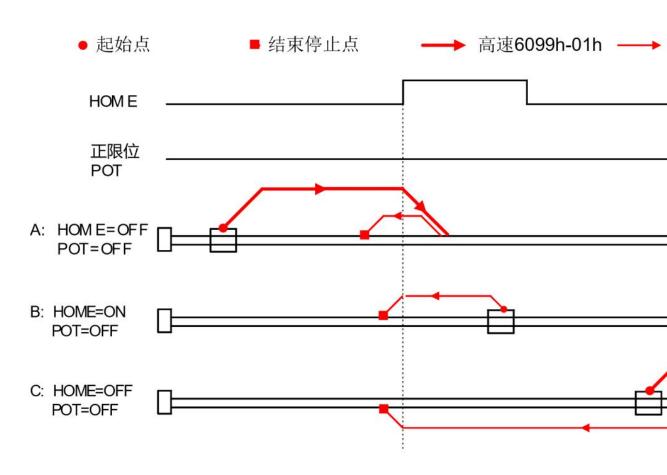
ECR60 驱动产品支持 17~34,35 的回原点方式,具体定义和回原点的过程如下描述。

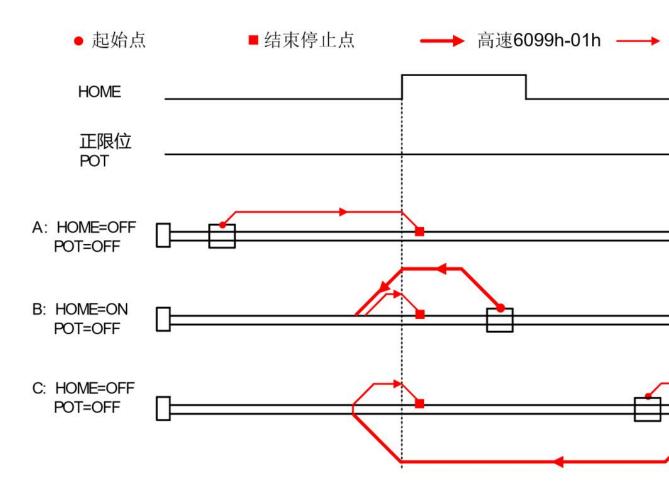

• 方法 17:

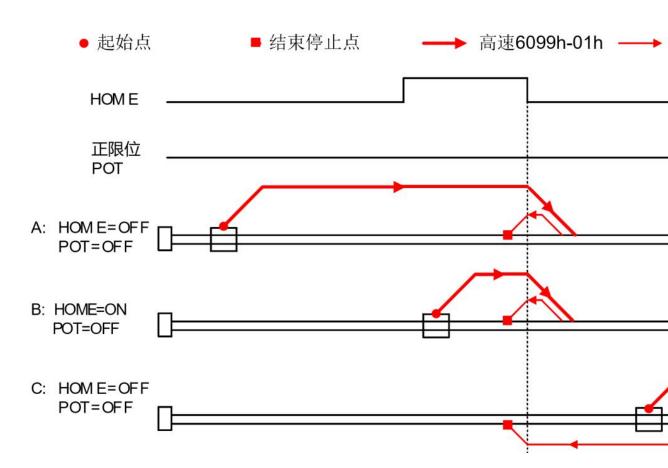

• 方法 18:

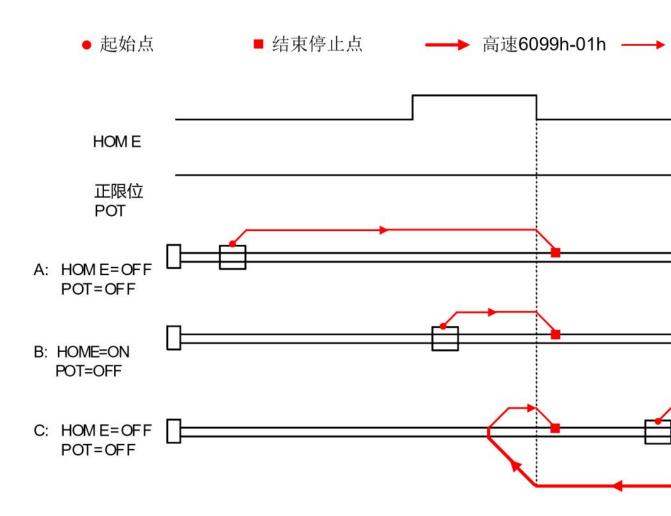

• 方法 19:

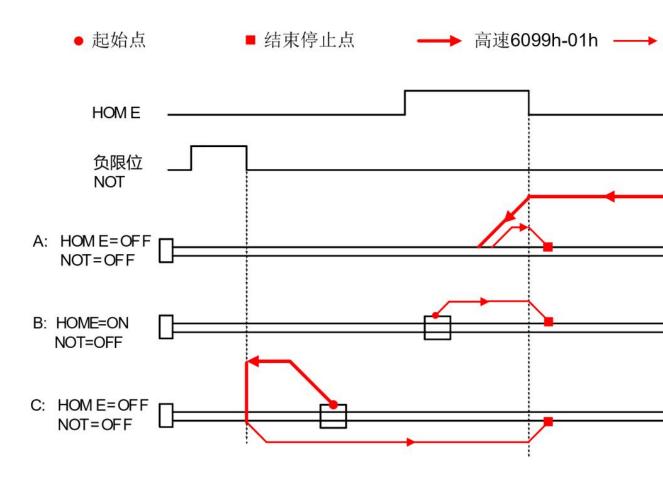

• 方法 20:

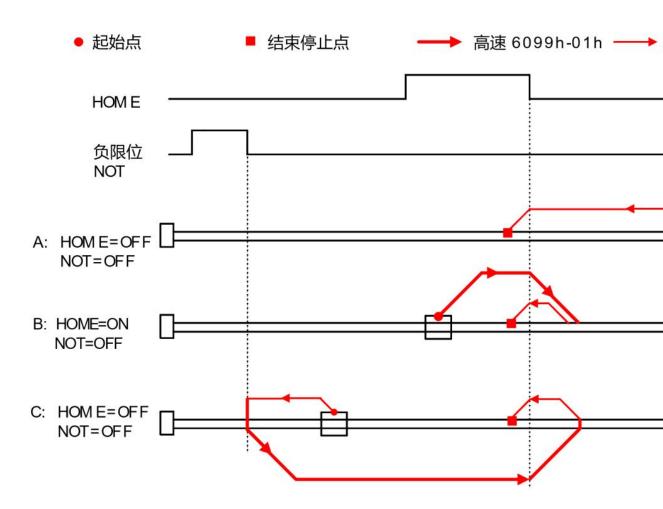

• 方法 21:

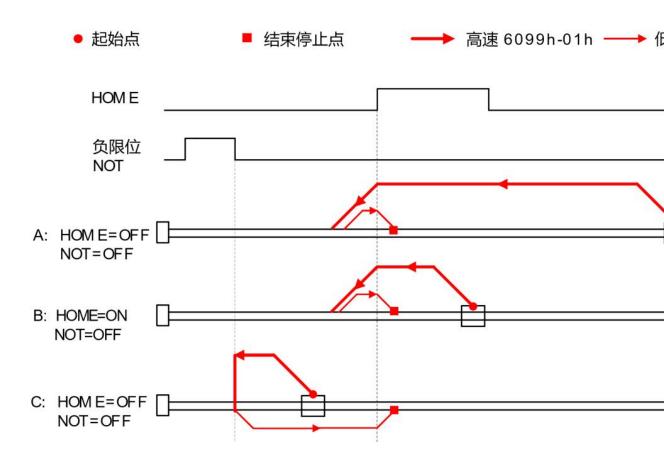

• 方法 22:

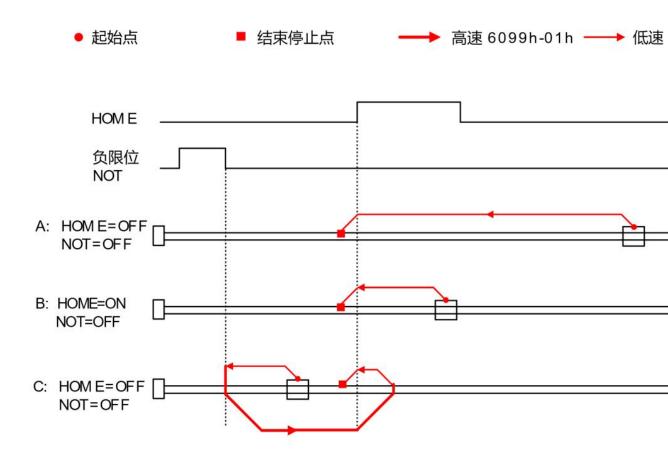

• 方法 23

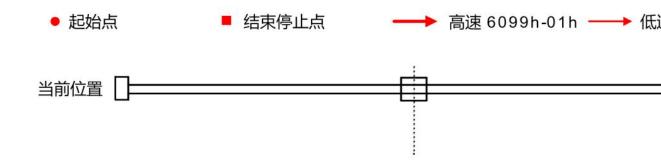

• 方法 24


• 方法 25:


• 方法 26:


• 方法 27:


• 方法 28:


• 方法 29:

• 方法 30:

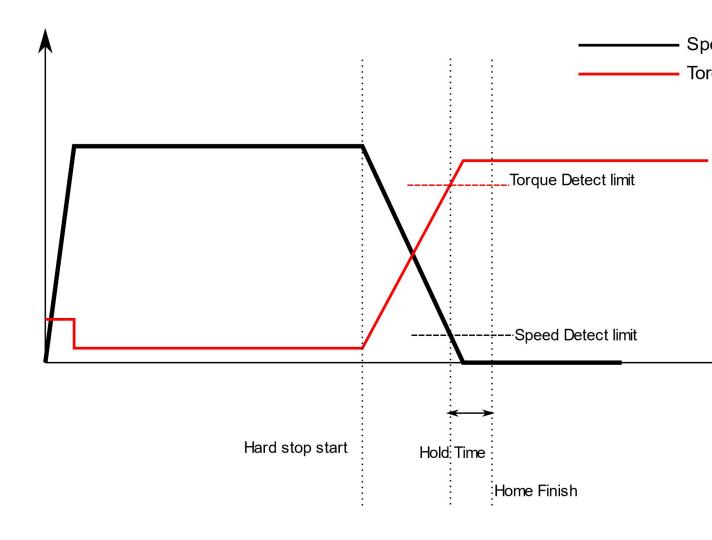
• 方法 35:

• 方法 36&37:

回零模式 36、37 为力矩回零模式,无需外部限位信号,依靠检测电机内部的

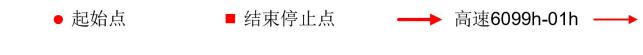
力矩输出,判断是否到达机械的硬限位。相关回零参数如下:

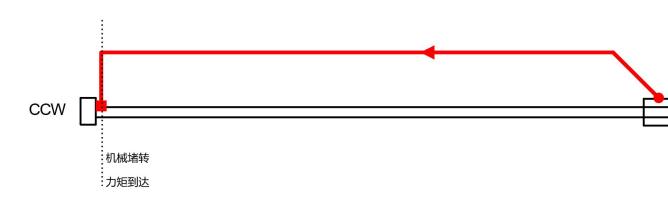
Index	Name	Flags	Value
2030:0	Home expansion parameters	RW P	> 6 <
2030:01	Torque Home MaxTorque output(%)	RW P	0x0032 (50)
2030:02	Torque Home Detect Limit(%)	RW P	0x0014 (20)
2030:03	Torque Home speed limit(RPM)	RW P	0x003C (60)
2030:04	Torque Home Hold Time(50us)	RW P	0x00C8 (200)
2030:05	Torque Mode speed_Kp	RW P	0x01F4 (500)
2030:06	Torque Mode speed_Ki	RW P	0x03E8 (1000


2030: 01 定义力矩回零过程中的最大力矩输出,为 0x2000 设定电流的百分比。

2030: 02 定义力矩回零过程中,判断电机是否位于机械限位的力矩,为 0x2000 设定电流的百分比。

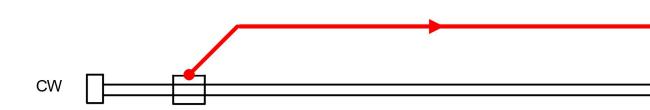
2030: 03 定义力矩回零过程中,断电机是否位于机械限位的转速限制。 2030: 04 定义力矩回零过程中,断电机是否位于机械限位的保持时间。


2030: 05 定义力矩回零过程中,速度环的比例增益。 2030: 06 定义力矩回零过程中,速度环的积分增益。


相关定义如下:

回零方法 36:

电机朝着 CCW 方向高速回零,碰到极限限位堵转后,回零完成。



• 方法 37:

电机朝着 CW 方向高速回零,碰到极限限位堵转后,回零完成。

● 起始点■ 结束停止点— 高速6099h-01h

